Center Manifolds and Attractivity for Quasilinear Parabolic Problems with Fully Nonlinear Dynamical Boundary Conditions

نویسنده

  • ROLAND SCHNAUBELT
چکیده

We construct and investigate local invariant manifolds for a large class of quasilinear parabolic problems with fully nonlinear dynamical boundary conditions and study their attractivity properties. In a companion paper we have developed the corresponding solution theory. Examples for the class of systems considered are reaction–diffusion systems or phase field models with dynamical boundary conditions and to the two–phase Stefan problem with surface tension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable and Unstable Manifolds for Quasilinear Parabolic Problems with Fully Nonlinear Dynamical Boundary Conditions

We develop a wellposedness and regularity theory for a large class of quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Moreover, we construct and investigate stable and unstable local invariant manifolds near a given equilibrium. In a companion paper we treat center, center–stable and center–unstable manifolds for such problems and investigate their stability p...

متن کامل

Reduction Principle and Asymptotic Phase for Center Manifolds of Parabolic Systems with Nonlinear Boundary Conditions

We prove the reduction principle and study other attractivity properties of the center and center-unstable manifolds in the vicinity of a steady-state solution for quasilinear systems of parabolic partial differential equations with fully nonlinear boundary conditions on bounded or exterior domains.

متن کامل

Center Manifolds and Dynamics near Equilibria of Quasilinear Parabolic Systems with Fully Nonlinear Boundary Conditions

We study quasilinear systems of parabolic partial differential equations with fully nonlinear boundary conditions on bounded or exterior domains. Our main results concern the asymptotic behavior of the solutions in the vicinity of an equilibrium. The local center, center–stable, and center–unstable manifolds are constructed and their dynamical properties are established using nonautonomous cuto...

متن کامل

Center Manifolds for Quasilinear Reaction-diiusion Systems

We consider strongly coupled quasilinear reaction-diiusion systems subject to nonlinear boundary conditions. Our aim is to develop a geometric theory for this type of equations. Such a theory is necessary in order to describe the dynamical behavior of solutions. In our main result we establish the existence and attractivity of center manifolds under suitable technical assumptions. The technical...

متن کامل

Center Manifolds for Quasilinear Reaction-diffusion Systems

We consider strongly coupled quasilinear reaction-di↵usion systems subject to nonlinear boundary conditions. Our aim is to develop a geometric theory for these types of equations. Such a theory is necessary in order to describe the dynamical behavior of solutions. In our main result we establish the existence and attractivity of center manifolds under suitable technical assumptions. The technic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014